22 November 2019 | Reading 7 mins.

Unlocking sustainable fuels and bio-based products

James Ling
Project Manager, Greenovate! Europe
Guillaume Corradino
Head of European Programs, Greenovate! Europe

James Ling, Project Manager, Greenovate! Europe

Guillaume Corradino, Head of European Programs, Greenovate! Europe

Making products and energy from renewable bio-resources (instead of from fossil fuels) is a key aspect to combat climate change, reduce our dependence on imported oil and stimulate economic growth in Europe. Producing cost-effective bio-butanol from sustainable feedstock is part of this transition.

The successful transition towards a more full-blown bioeconomy is dependent on the optimal use of biomass resources. Their availability is limited and the use of certain feedstocks, such as arable crops, raises concerns about their competition with food production and the greenhouse gas impacts of indirect land use change. Attention is turning to more sustainable feedstocks such as agricultural residues, biological waste and fast-growing energy crops, which do not compete with food production or contribute to deforestation. Transforming these sustainable feedstocks into high value products is technically challenging. Research and innovation is being undertaken to develop improved production processes that are cheaper, more efficient and environmentally friendly.

The Biobutanol Potential Prize

Fermentation is a conversion method that can be used to turn biomass into valuable products. Acetone–butanol–ethanol (ABE) fermentation uses bacteria to produce acetone, butanol, and ethanol from carbohydrates such as starch and glucose. The process may be likened to how yeast ferments sugars to produce ethanol for wine, beer, or fuel. Due to the rise of cheap petroleum-based production, ABE fermentation of biomass fell out of fashion in the second half of the 20th century, but driven by technological advances and the growing demand for sustainable alternatives to fossil fuels, this old process is now being rediscovered.

The main product of ABE fermentation is biobutanol. Biobutanol is considered an exciting alternative to first generation biofuels such as biodiesel and bioethanol. Interestingly, it is also a building block chemical used extensively in paints, coatings, adhesives and inks. Given this huge potential, funds are quickly being found for biobutanol production.

Currently, converting more sustainable woody biomass remains technically challenging. On top of this, each production step is frequently developed separately, leading to difficulties in optimization and scale-up speed. To overcome this, the EU-funded ButaNexT project set out to optimize the process at value chain level. During the 3 years of the project, ButaNexT developed and demonstrated, at pilot scale, a more cost-competitive, efficient and environmentally friendly process to convert sustainable renewable feedstocks into biobutanol.

Continue reading

Discover our plans.

Subscribe to read more

Already subscribed? Log in.